- Phys IV notes

Review of Lecture 9:

· Matching conditions

$$\vec{E}_2'' - \vec{E}_1'' = 0$$

$$\vec{D} = \vec{z} \vec{E}$$

$$\vec{H}_2'' - \vec{H}_1'' = \vec{J}_s \times \vec{N}$$

$$\vec{H} = \frac{1}{2} \vec{B}$$

$$D_2 - D_1 = Ps$$

$$\beta_2^1 - \beta_1^1 = 0$$

$$\sigma^2 = \frac{1}{291} = c^2 \frac{2090}{291} = c \frac{1}{2}$$

· Plane waves in medium (see lec. 9)

9. Ett energy in medium We would like to derive an expression Joor the energy lensity, energy thus and energy conservation in a media with non-towal u and E. We will focus on the isotropic case with constant prand E. Thus, we are booking for the analogs of the vacuum equations: 94 + E. 3 + T. S = 0 , where 3 = go ExB [Pointing vector] U= = = |E| + = |B|

2 Shin = 3. E [change in the kinetic 87 energy of the charges] We derived these equations in Lecture 4 by multiplying second and third Maxwell equations by E and B correspondingly. We now do the same with the averaged equations and multiply by averaged equations and B:

Du + E. E. S. > + J. S. = 0

St Le the entry difference

Now we use the equation for z.j.

Grow Lecture 8:

$$\langle \vec{j} \rangle = \vec{z} + \frac{\partial \vec{P}}{\partial +} + \vec{\nabla} \times \vec{M}$$
, where

E. 3 = Work done on the gree drarges

$$\frac{\partial y}{\partial t} = 20 \vec{E} \cdot \frac{\partial \vec{E}}{\partial t} + \frac{1}{10} \vec{R} \cdot \frac{\partial \vec{B}}{\partial t}$$

$$\vec{E}\left(\frac{200\vec{E}}{9t} + \frac{3\vec{P}}{9t}\right) = \vec{E} \cdot 2 \vec{E} = \frac{1}{2} \vec{A} (\vec{E} \cdot \vec{B})$$

$$\vec{D} = 20\vec{E} + \vec{P} = 2\vec{E}$$

massage the Now we need to E. FxM term.

we rewrite it as

$$\vec{E} \cdot \vec{\partial} \times \vec{H} = \vec{\nabla} \cdot (\vec{M} \times \vec{E}) + \vec{M} (\vec{\partial} \times \vec{E}) =$$

We thus get

EM waves in Medium

We again study isotropic Unear

Ig there are no gree charges,

$$\vec{\nabla} \cdot \vec{D} = 0 \qquad \vec{\vec{\nabla}} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$

$$\vec{\nabla} \times \vec{H} - \frac{3\vec{D}}{3+} = 0 \qquad \vec{\nabla} \cdot \vec{B} = 0$$

Letis derive the wave equation for the magnetic field (as we did in the first lecture)

As an application of matching conditions, one can derive the laws of reflection and transmission through the Boundary of two media:

22, M2

Sint = ns [Note connection between sini no the ray optics and the wave optics]

Plan of the last 5 lectures

- · Galileau invariance and Lorentz invariance
- · Physics of Lorentz transformations
- · Covarient formulation of EM
- · Covariant Jornulation of Newtonian mechanics
- · Action principle gor EM

Plan of this becture

- · Historical remarks about Galilei and Lorentz in v.
- o Symmetries of lagrenghous Calilean group and group of rotations
- « Pailure og the Galilean invariance og the wave equation

- Divarbance of the speed of light and wave equation under Lorentz transformations
- as 4D votations.

Galilean invariance

Galilei 1564-1642 suggested that lans of Physics are Invariant under change of the reference frame:

$$x^1 = x + \omega +$$

ig grame F' moves with respect to F with velocity F.

This, together with rotations:

$$\sum_{i=1}^{n} \mathbb{R}^{i} = \mathbb{R}^{i} = \mathbb{R}^{i} = \mathbb{R}^{i} \times \mathbb{C}^{i} = \mathbb{R}^{i} \times \mathbb{C}^{i}$$

And translations: $\chi' = \chi + \alpha$ + = + + T

John the group of Symmetries of Newtonian mechanics (Newton 1643-1727). By the end of XIX century it was believed that speed of light has the same properties as that of the other waves: V 2-V Swave O O juside a traig l'highet propagates in "aether", hence 20, geo) Maxwell egus ~ 1870 c2 = 20 90 However, Michelson and Morley in 1880's showed that speed of light was the same in all frames. This lead to a puzzle

Constancy of the speed of light ~ ~ Joilure of home equation (Maxwell egn's) to be invariant under Galilean transformations.

1900 Kelvin's "Two douds" lecture

Second "doud" was Justine of classical stat-med. to explain the radiation spectra.

Theory of relativity Quantum mechanics Einstein, 1905

Both in one year.

Symmetries of Lagrenghous - Galilean group and group of rotations

Consider a typical Lagrenglan:

Equations John Jrom $\frac{55}{5} = 3$

 $\sum_{i=1}^{N} \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}$

+=++

invariant (R peserves angles and lengths)

Galilean a Bit less totulal.

MX + MV·X + M J

$$(+1), \times_{1}, \times_{2}, \times_{3}) =$$

$$= (+, \times_{2} + \sigma_{1} +, \times_{2} + \sigma_{2} +, \times_{3} + \sigma_{5} +) = \begin{pmatrix} 1 \\ \sigma_{1} & 1 \\ \sigma_{2} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ \times_{3} \\ \sigma_{3} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ \times_{4} \\ \times_{3} \\ \times_{3} \end{pmatrix}$$

$$\mathring{G}(\vec{v}).\mathring{G}(\vec{v}') = \mathring{G}(\vec{v}+\vec{v}')$$

Group multiplientson

Group of rotations:

$$X_{1}^{\prime} = R_{1}^{\prime} \times 3 : \qquad \times_{1}^{\prime} \qquad R_{11} R_{12} R_{13} \times_{1}^{\prime}$$

$$X_{2}^{\prime} = R_{21} R_{22} R_{23} \times_{2}^{\prime}$$

$$X_{3}^{\prime} = R_{31} R_{32} R_{33} \times_{2}^{\prime}$$

$$X_{3}^{\prime} = R_{31} R_{32} R_{33} \times_{2}^{\prime}$$

three notations for the same thing.

$$X^{n_1} = R^{n_2} X^{n_2}$$

$$R_{n_2} X^{n_2}$$

$$R_{n_3} X^{n_4}$$

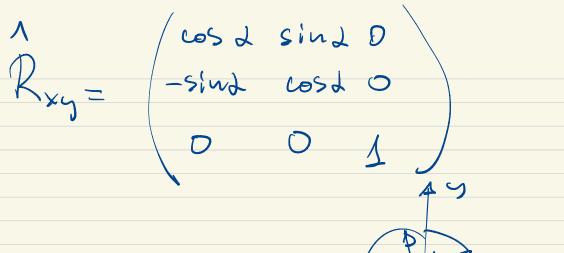
$$R_{n_4} X^{n_5}$$

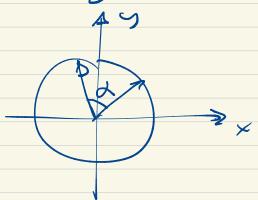
$$R_{n_5} X^{n_5}$$

$$R_{n_5} X^{n_5}$$

$$R_{n_5} X^{n_5}$$

group can be written as combination of three rotations?





Rotestian preserves scalar products;

$$\overline{X} \cdot \overline{y} = \overline{x}' \cdot \overline{y}' : \qquad x' = R_{i,j} \times_{j}$$

$$y' = R_{i,k} y_{k}$$

$$X_i \cdot y_i = X_i R_i y_i R_i R_i X_j (R_i R_i)$$
 $X_i (R_i R_i)$
 $X_i (R_i R_i)$

$$\frac{1}{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \approx S_{ij} \quad \text{(knoweder - delta)}$$

Since & is true for any \$\frac{7}{2} and \$\frac{7}{2}\$,

 $R \cdot R = I \longrightarrow R$ is an orthogonal matrix

Let RR = Let R = Let R = 1

R preserves ordenflation: let R = S

SO(3) Parity: Ret=1 Porthogonal P= (-10)

 $P \otimes R \rightarrow O(3)$

Failure og the Galilean invariance og the wave equation

$$0 \psi = 0 \qquad \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i} \psi = 0$$

Translations and potentions are OK!

$$\frac{9+}{9} = \frac{9x!}{9} \cdot \frac{8+}{9} \cdot \frac{9+}{9} = \frac{9+}{9} = \frac{9+}{9} \cdot \frac{9+}{9} = \frac{9+}{9}$$

$$\frac{\partial^2}{\partial t^2} \rightarrow \frac{\partial^2}{\partial t^2} + 2vi\frac{\partial}{\partial x_i}\frac{\partial}{\partial t} + \left(vi\frac{\partial}{\partial x_i}\right)^2$$

It is because we did not transform a same statement is that constance per speed of light is in contrast with Calilean invariance:

Summary:

	Translations	Rotations	Galilean
Mechanics	✓	\	
CED	\		X

- · Wave egn not invariant => Maxwell egn.
- · Note: gauge invariance vs global symmetry invariance.

Invariance of the speed of light and wave equation under Lorentz transformations

We would like to suggest that
the idea of equivalence of inertial
reference growne is still true in EM.
However, the transformation laws for
coordinates change.

Galilean boosts -> Lorentz Boosts.

Which transformation heaves invariant the wave equation?

$$\left(\frac{1}{2}\left(\frac{\partial}{\partial +}\right)^{2} - \left(\frac{\partial}{\partial x_{s}}\right)^{2} - \left(\frac{\partial}{\partial x_{s}}\right)^{2} - \left(\frac{\partial}{\partial x_{s}}\right)^{2}\right) = 0$$

There are several ways to derive it.
I prefer the Jollowing:

Wick roterton and Lorentz transformations.

introduce "Euclidean time"

the wave equation becomes

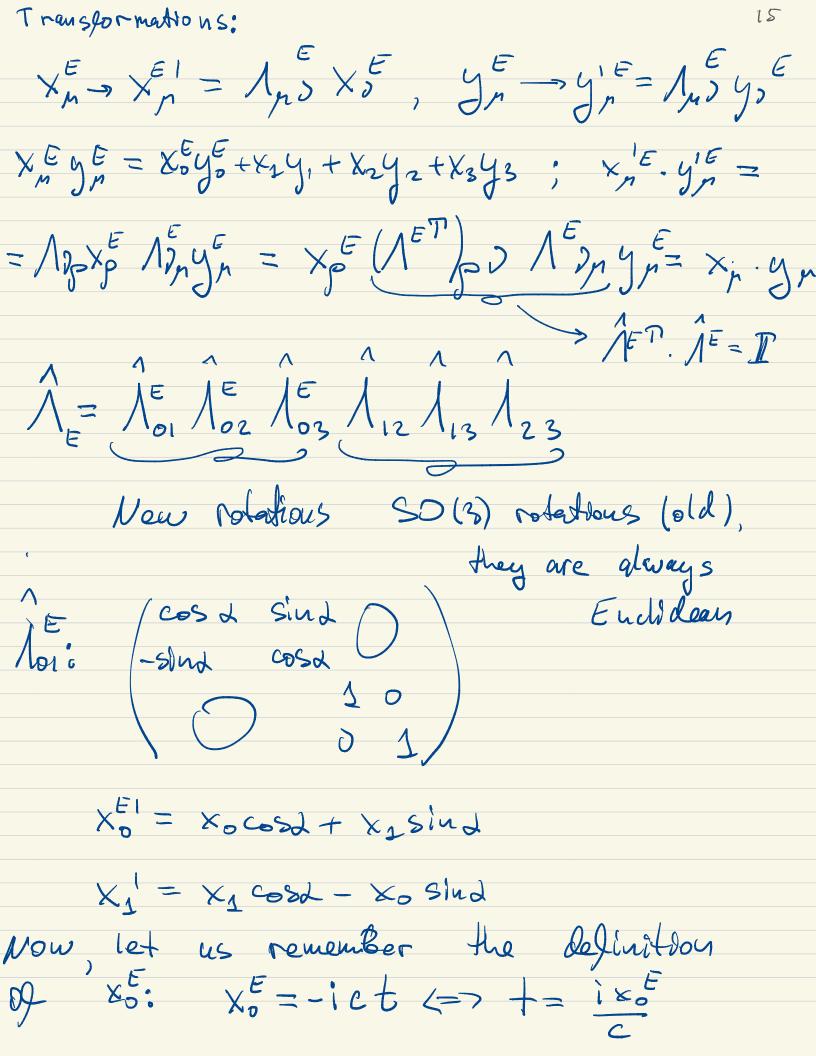
$$-\left(\frac{\partial}{\partial x_{0}}\right)^{2} - \left(\frac{\partial}{\partial x_{1}}\right)^{2} - \left(\frac{\partial}{\partial x_{2}}\right)^{2} - \left(\frac{\partial}{\partial x_{2}}\right)^{2} + \left(\frac$$

invariant under SD(3)

invariant under SD(4) -

-4D rotations o absolutely analogous to 3D rotations.

$$\Lambda_{E} \in SD(4): \qquad \Lambda_{E} \wedge \Lambda_{E} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



$$-ict' = -ict cosd + x_1 sind$$

$$x_1' = x_1 cosd + ict sind$$

$$x_1' = ct cosd + i x_1 sind$$

$$x_2' = x_1 cosd + ict sind$$

$$x_3' = x_1 cosd + ict sind$$

define rapidity:
$$X = 12$$

isind = sinh X
 $d = -i X$
 $cos 2 = cosh X$

$$t' = + \cosh \chi + \frac{x_1}{c} \sinh \chi$$

Lorentz

 $x_1 = x_1 \cosh \chi + c_1 + \sin \chi$

Boost

$$\beta \rightarrow 0: \beta \sim \frac{V_1}{C}$$

$$+ 1 = + + 0(\frac{1}{C^2})$$

$$+ 1 = + 0(\frac{1}{C^2})$$

$$+ 0 = + 0(\frac{1}{C^2})$$

If Endidean objects are invariant under SO(4) rotations Lorentzian objects defined through $t = \frac{i \times 5}{c}$ will be invariant under Lorentz transformations defined through $X = i \times 5$ (they form SO(1,3) group).

Now we define actual Lorentz toansformattons:

$$\int_{0}^{\infty} \frac{1}{2} \left(\frac{1}{2} \frac{$$

Same for other boosts.